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Abstract

Efficient numerical methods for analyzing photonic crystals (PhCs) can be developed using the Dirichlet-to-Neumann
(DtN) maps of the unit cells. The DtN map is an operator that takes the wave field on the boundary of a unit cell to its
normal derivative. In frequency domain calculations for band structures and transmission spectra of finite PhCs, the DtN
maps allow us to reduce the computation to the boundaries of the unit cells. For two-dimensional (2D) PhCs with unit cells
containing circular cylinders, the DtN maps can be constructed from analytic solutions (the cylindrical waves). In this
paper, we develop a boundary integral equation method for computing DtN maps of general unit cells containing cylinders
with arbitrary cross sections. The DtN map method is used to analyze band structures for 2D PhCs with elliptic and other
cylinders.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Photonic crystals (PhCs) [1–3] are periodic structures with a period on the scale of light wavelength. They
have attracted much attention in recent years due to their unusual ability to control and manipulate light.
Optical components and devices made of PhCs exhibit many unique functionalities, such as cavities with
ultra-small mode volumes, ultra-compact waveguide bends, superprism effect, self-guiding, negative refractive
index, slow light, etc. Efficient numerical methods are needed to analyze fundamental properties of PhCs and
to design and optimize PhC components and devices.
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The most important property of a PhC is its band structure of the spectrum. The band structure comprises
dispersion relations between the frequency and the Bloch wave vector for waves allowed to propagate in the
PhC. Many numerical methods have been developed for computing band structures. Time domain methods
[5,6] have been used, but most existing techniques rely on frequency domain formulations. In the standard
frequency domain formulation [3], the band structure problem is an eigenvalue problem on a unit cell of
the PhC, where x2 (x is the angular frequency) is the eigenvalue and the components of the Bloch wave vector
are parameters. For a non-dispersive medium, the eigenvalue problem is linear, but it becomes nonlinear if the
medium is dispersive [4]. A number of numerical methods using this formulation rely on expanding the eigen-
function in some series on the unit cell. The popular plane wave expansion method [7–11] uses the Fourier
series, but other series can also be used [12,13]. Alternatively, the eigenvalue problem can be solved by a direct
discretization of the unit cell. Numerical methods following this approach include the finite element method
[14–16], the finite difference methods [17–20], the pseudospectral method [21], the cell method [22], the moving
least squares method [23], the multiple multipole method [24], etc. For a non-dispersive medium, these meth-
ods give rise to eigenvalue problems of large matrices which are sparse in some cases. For dispersive media, the
matrices depend on the frequency, the eigenvalue problem is nonlinear and more difficult to solve.

The band structure can also be calculated using alternative formulations where x is regarded as a parameter
and the eigenvalue is related to a component of the Bloch wave vector. In a formulation on the unit cell, this
gives rise to a linear eigenvalue problem even when the medium is dispersive [25]. Furthermore, we can refor-
mulate the eigenvalue problem to the boundary of the unit cell using the transfer matrix [26,27], the scattering
matrix [28,34] or the Dirichlet-to-Neumann map [29,30] formalisms. These reformulations give rise to linear
eigenvalue problems (even for dispersive media) for rather small matrices when they are discretized. Of course,
additional work is needed to calculate the transfer matrix, the scattering matrix or the DtN map at each fre-
quency. Although the transfer matrix is easy to calculate [26,27], the method suffers numerical instability. The
scattering matrix can be constructed using a multipole method with lattice sums techniques [28] or other
numerical methods for diffractive optics such as the Fourier modal method [31,32] and the finite element
method [33,34]. The DtN map is an operator that maps the wave field on the boundary of the unit cell to
its normal derivative. It can be approximated by a J � J matrix, if the wave field inside the unit cell is approx-
imated by the linear combination of J special solutions. For two-dimensional (2D) PhCs where each unit cell
contains exactly one circular cylinder, we have used the cylindrical waves as the special solutions [29,30]. In
that case, the DtN map can be efficiently constructed using OðJ 3Þ operations. Based on the DtN map of
the unit cell, the band structure can be calculated from standard matrix eigenvalue problems. Since the typical
value of J is quite small, the DtN map method for band structure calculation is highly competitive. The DtN
maps can also be used to derive efficient numerical methods for analyzing PhCs of finite size [35,36].

In this paper, we extend the DtN map method to 2D photonic crystals composed of identical and parallel
cylinders with arbitrary cross sections. In Section 2, we first present improved eigenvalue formulations based
on the DtN maps. Compared with the formulations used in [29], the new formulations are simpler and involve
smaller matrices in some cases. In Section 3, we develop the boundary integral equation method for unit cells
containing cylinders of arbitrary cross sections. In such a general unit cell, simple analytic solutions are not
available. Our approach is to calculate the special solutions needed for constructing the DtN map by solving
scattering problems of the cylinder with different plane incident waves. Since the size of the cylinder cross sec-
tion is on the order of the wavelength, the integral equations formulated on the boundary of the cylinder
require a relatively small number of discretization points. The different solutions corresponding to different
incident waves can be efficiently solved together, as they are related to linear systems with an identical coef-
ficient matrix and different right hand sides. We illustrate our method by band structure calculations for
square and rectangular lattices.

2. Eigenvalue problems

For time harmonic electro-magnetic waves propagating in a 2D medium, the governing equation is
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where k0 ¼ x=c is the free space wavenumber, x is the angular frequency, c is the speed of light in vacuum,
n ¼ nðxÞ is the refractive index function and x ¼ ðx; yÞ. For the E polarization, u is the z-component of the
electric field and q ¼ 1. For the H polarization, u is the z-component of the magnetic field and q ¼ n2. For
a 2D PhC, the refractive index function is periodic in two distinct directions. We have two vectors a1 and
a2, such that
Fig. 1.
X 0 and
nðxÞ ¼ nðxþ l1a1 þ l2a2Þ; ð2Þ

where l1 and l2 are arbitrary integers. As shown in Fig. 1(a), the parallelogram X specified by the vectors a1

and a2, i.e.,
X ¼ fx ¼ s1a1 þ s2a2 j 0 < s1; s2 < 1g ð3Þ

is a unit cell of the PhC. Two edges of X are C1 and C2 given below
C1 ¼ fx ¼ s1a1 j 0 < s1 < 1g; C2 ¼ fx ¼ s2a2 j 0 < s2 < 1g: ð4Þ

The other two edges of X are a2 þ C1 and a1 þ C2. We also let m1 and m2 be two unit vectors perpendicular to a1

and a2, respectively. These two vectors will serve as the unit normal vector of the boundary of X. We can
choose m1 and m2 to be the inward unit normal vector of X on C1 and C2, then they are the outward normal
vector on the other two edges of X.

For 2D PhCs, we consider Bloch wave solutions of the Helmholtz equation (1) given as
uðxÞ ¼ eik�xWðxÞ; ð5Þ

where k ¼ ða; bÞ is the Bloch wave vector and W follows the same periodic condition (2) as the refractive index
function. This implies that u satisfies the following quasi-periodic conditions:
uðxþ a1Þ ¼ q1uðxÞ; uðxþ a2Þ ¼ q2uðxÞ; ð6Þ

where q1 ¼ expðik � a1Þ and q2 ¼ expðik � a2Þ. Alternatively, we can write down the quasi-periodic conditions in
terms of u and its normal derivatives on edges of X. The normal derivatives follow the unit normal vectors m1

and m2 chosen earlier. We have
uðxþ a2Þ ¼ q2uðxÞ; ou
om1

ðxþ a2Þ ¼ q2

ou
om1

ðxÞ; x 2 C1; ð7Þ

uðxþ a1Þ ¼ q1uðxÞ; ou
om2

ðxþ a1Þ ¼ q1

ou
om2

ðxÞ; x 2 C2: ð8Þ
In the standard formulation [3], Eq. (1) and boundary conditions (7) and (8) give rise to an eigenvalue problem
on X, where a and b are given parameters and x2 (or k2

0) is the eigenvalue. Most existing numerical methods
use this formulation. The solutions give rise to a discrete sequence of dispersion relations
x ¼ xkðkÞ; k ¼ 1; 2; . . . ð9Þ
Γ1

Γ2

a2
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(a) The unit cell X for a photonic crystal with two translation vectors a1 and a2. (b) The first Brillouin zone B with points C, X, M,
M 0 corresponding to pb1, pðb1 þ b2Þ, pb2 and pðb2 � b1Þ, respectively.
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For lossless media, the frequencies xk are real and they can be ordered as an increasing sequence. Each dis-
persion relationship is a surface of two variables a and b. If for some integer k, the maximum of xk is less than
the minimum of xkþ1, we have a band gap:
ðmax
k

xkðkÞ;min
k

xkþ1ðkÞÞ:
If the frequency x is in a band gap, propagating Bloch waves do not exist for any real a and b, therefore,
waves at this frequency cannot propagate in the PhC.

Due to the periodicity of the PhC, xk is a periodic function of the Bloch wave vector k satisfying
xkðkþ 2pl1b1 þ 2pl2b2Þ ¼ xkðkÞ; ð10Þ

where l1 and l2 are arbitrary integers, b1 and b2 are vectors satisfying
bj � ak ¼ djk ¼
1 if j ¼ k;

0 if j 6¼ k:

�
ð11Þ
Therefore, it is only necessary to calculate the dispersion relations (9) on the first Brillouin zone
B ¼ fk ¼ s1b1 þ s2b2 j �p < s1; s2 < pg: ð12Þ

For the unit cell shown in Fig. 1(a), the corresponding first Brillouin zone B is depicted in Fig. 1(b). The points
C, X, M, X 0 and M 0 correspond to pb1, pðb1 þ b2Þ, pb2 and pðb2 � b1Þ, respectively. For a lossless medium
where the refractive index is real, if u is a solution of the Helmholtz equation (1), then �u (the complex conju-
gate of u) is also a solution. If u is a Bloch wave solution with a wave vector k, then u is a Bloch wave solution
with wave vector �k. This implies that the dispersion relations are even functions of k, i.e.,
xkðkÞ ¼ xkð�kÞ: ð13Þ

Therefore, if nðxÞ is real, we only need to compute the dispersion relations on one half of the first Brillouin
zone. Furthermore, using (13) and the periodicity (10), we can deduce that the dispersion relations are sym-
metric with respect to the mid-point on each edge of the first Brillouin zone. For example, on the top edge
given by
k ¼ pb2 þ ps1b1; �1 < s1 < 1;
we have
xkðpb2 þ ps1b1Þ ¼ xkð�pb2 � ps1b1Þ ¼ xkðpb2 � ps1b1Þ: ð14Þ

Using other symmetries, it is often possible to further reduce the computation domain of k. In practice, the
dispersion relations are often calculated on edges of the irreducible Brillouin zone. If the medium is disper-
sive (thus, the refractive index n depends on x), this eigenvalue problem is nonlinear and more difficult to
solve.

Alternatively, we can consider x as a given parameter and formulate the band structure problem as eigen-
value problems with an eigenvalue related to the Bloch wave vector k. Let us expand k as k ¼ c1b1 þ c2b2. If c1

is assumed to be a given parameter, we can formulate an eigenvalue problem for c2. Notice that c1 ¼ k � a1 and
c2 ¼ k � a2. To remove the eigenvalue c2 from the boundary condition (7), we re-write the Bloch wave given in
(5) as
uðxÞ ¼ eic2b2�x/ðxÞ: ð15Þ

From (1), we obtain the following equation for /:
qr � 1

q
r/

� �
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q
/
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2kb2k2/ ¼ 0: ð16Þ
From the quasi-periodic conditions of u, it is easy to see that / is quasi-periodic in a1 direction and periodic in
a2 direction. That is
/ðxþ a1Þ ¼ q1/ðxÞ; /ðxþ a2Þ ¼ /ðxÞ: ð17Þ
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This gives rise to the boundary conditions of /:
/ðxþ a2Þ ¼ /ðxÞ; o/
om1

ðxþ a2Þ ¼
o/
om1

ðxÞ; x 2 C1; ð18Þ

/ðxþ a1Þ ¼ q1/ðxÞ;
o/
om2

ðxþ a1Þ ¼ q1

o/
om2

ðxÞ; x 2 C2: ð19Þ
Therefore, we obtain a quadratic eigenvalue problem (16), (18) and (19) for eigenfunction / and eigenvalue c2.
Notice that the quadratic eigenvalue problem can be turned into a linear eigenvalue problem if we change (16)
into a system of two equations with an additional function u ¼ c2/. This eigenvalue problem is still formu-
lated on the unit cell X and it is linear even if the medium is dispersive.

The band structure eigenvalue problem can be further reduced to the edges of the unit cell X. The transfer
matrix approach [26,27] is easy to implement, but it suffers from numerical instabilities. The scattering matrix
approach [28,34] relies on decomposing the wave field as the sum of its forward and backward components,
i.e, u ¼ uþ þ u�, around the edges C1 and C1 þ a2. If we denote u� on C1 and C1 þ a2 as u�0 and u�1 , respec-
tively, then the scatter matrix S satisfies
S
uþ0
u�1

� �
¼

S11 S12

S21 S22

� �
uþ0
u�1

� �
¼

u�0
uþ1

� �
: ð20Þ
Here, S is given as a 2� 2 matrix where each entry is an operator acting on functions defined on edges of X.
The quasi-periodicity in a2 direction implies
uþ1 ¼ q2uþ0 ; u�1 ¼ q2u�0 : ð21Þ

This leads to the following eigenvalue problem
S11 �I

S21 0

� �
uþ0
u�0

� �
¼ q2

0 �S12

I �S22

� �
uþ0
u�0

� �
; ð22Þ
where I is the identity operator and q2 is the eigenvalue. Notice that this is a linear eigenvalue problem even if
the medium is dispersive. The scattering matrix S can be calculated by analyzing one layer of the PhC, i.e.,
x ¼ s1a1 þ s2a2 for �1 < s1 <1 and 0 < s2 < 1, as a diffraction grating problem. Existing numerical meth-
ods for diffraction gratings, such as the Fourier modal method [31,32], the finite element method [33,34] and
the multipole method [28], can be used to find S.

Another reformulation of the band structure eigenvalue problem is based on the Dirichlet-to-Neumann
maps. In [29,30], we formulated the eigenvalue problems for square and triangular lattices, respectively. In
the following, we derive improved formulations for general lattice structures. These new formulations are sim-
pler and they involve smaller matrices in some cases. If we denote fu; om1

ug on the edges C1 and C1 þ a2 by
fu0; om1

u0g and fu1; om1
u1g, respectively, the reduced DtN map M gives
M
u0

u1

� �
¼

M11 M12

M21 M22

� �
u0

u1

� �
¼

om1
u0

om1
u1

� �
: ð23Þ
Similar to the scatter matrix S, the reduced DtN map M is a 2� 2 matrix with operator entries. Using the
quasi-periodic condition in a2 direction, i.e.,
u1 ¼ q2u0; om1
u1 ¼ q2om1

u0;
we obtain the following linear eigenvalue problem
M11 �I

M21 0

� �
u0

om1
u0

� �
¼ q2

�M12 0

�M22 I

� �
u0

om1
u0

� �
; ð24Þ
where q2 is the eigenvalue. It turns out that the reduced DtN map M can be easily calculated from the DtN
map K of the unit cell X satisfying
K

u0

v0

u1

v1

2
6664

3
7775 ¼

K11 K12 K13 K14

K21 K22 K23 K24

K31 K32 K33 K34

K41 K42 K43 K44

2
6664

3
7775

u0

v0

u1

v1

2
6664

3
7775 ¼

om1
u0

om2
v0

om1
u1

om2
v1

2
6664

3
7775; ð25Þ
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where v0 and v1 denote u on the edges C2 and C2 þ a1, respectively, and om2
v0 and om2

v1 denote the normal deriv-
atives of u there. Using the quasi-periodic conditions in a1 direction, i.e., v1 ¼ q1v0 and om2

v1 ¼ q1om2
v0, and the

second and fourth equations of (25), we can eliminate om2
v0 and obtain an equation for v0:
Dv0 ¼ ðK41 � q1K21Þu0 þ ðK43 � q1K23Þu1; ð26Þ

where
D ¼ q2
1K24 þ q1ðK22 � K44Þ � K42:
The above gives rise to v0 ¼ K1u0 þ K2u1, where
K1 ¼ D�1ðK41 � q1K21Þ; K2 ¼ D�1ðK43 � q1K23Þ:

We can insert these results into the first and third equations of (25) and obtain
M ¼
K11 K13

K31 K33

� �
þ

K12 þ q1K14

K32 þ q1K34

� �
½K1;K2�: ð27Þ
In the three eigenvalue formulations (16), (18), (19), (22) and (24), we have assumed that the frequency x and a
component of the Bloch wave vector c1 ¼ k � a1 are given parameters. The eigenvalue is either c2 ¼ k � a2 or
q2 ¼ eic2 . Similarly, we can derive band structure eigenvalue formulations where x and c2 are given parameters
and c1 or q1 ¼ eic1 is the eigenvalue. For the DtN map formulation, applying the quasi-periodic conditions in
a2 direction to (25), we can find another reduced DtN map N satisfying
N
v0

v1

� �
¼

N 11 N 12

N 21 N 22

� �
v0

v1

� �
¼

om2
v0

om2
v1

� �
: ð28Þ
Then, the quasi-periodic condition in a1 direction gives rise to the following eigenvalue problem:
N 11 �I

N 21 0

� �
v0

om2
v0

� �
¼ q1

�N 12 0

�N 22 I

� �
v0

om2
v0

� �
: ð29Þ
In principle, the dispersion relations in (9) are needed for all k in the irreducible Brillouin zone. If only the
edges of the irreducible Brillouin zone are used, band gaps can be over estimated [40]. Our method can be used
to compute the dispersion relations on the entire Brillouin zone. If the DtN eigenvalue formulation (24) is
used, we need to vary two parameters x and c1, and solve (24) for each selection of the parameters. Only eigen-
values on the unit circle, i.e. jq2j ¼ 1, are needed, since we are looking for Bloch waves with a real Bloch wave
vector. In practice, the dispersion relations are often calculated on a few edges of the irreducible Brillouin
zone. The two formulations (24) and (29) allow us to calculate the dispersion relations along lines parallel
to b2 and b1, respectively. Next, we formulate eigenvalue problems on the two diagonals of the first Brillouin
zone. On the diagonal given by k ¼ sðb1 þ b2Þ for �p < s < p, we have c1 ¼ k � a1 ¼ k � a2 ¼ c2 and q1 ¼ q2.
Using the quasi-periodic conditions in both a1 and a2 directions, we can eliminate u1, v1, om1

u1 and om2
v1 in (25),

and obtain the following eigenvalue problem:
K11 K12 �I 0

K21 K22 0 �I

K31 K32 0 0

K41 K42 0 0

2
6664

3
7775U ¼ q

�K13 �K14 0 0

�K23 �K24 0 0

�K33 �K34 I 0

�K43 �K44 0 I

2
6664

3
7775U ; ð30Þ
where U ¼ ½u0; v0; om1
u0; om2

v0� is a column vector given in the MATLAB notation (u0; v0; . . ., are column vec-
tors), and the eigenvalue is q ¼ q1 ¼ q2. On the other diagonal given by a ¼ sðb2 � b1Þ for �p < s < p. We
have c2 ¼ �c1 and q2 ¼ q�1

1 . Eliminating u1, v0, om1
u1 and om2

v0 in (25), we have
K11 K14 �I 0

K41 K44 0 �I

K31 K34 0 0

K21 K24 0 0

2
6664

3
7775U ¼ q

�K13 �K12 0 0

�K43 �K42 0 0

�K33 �K32 I 0

�K23 �K22 0 I

2
6664

3
7775U ; ð31Þ
where U ¼ ½u0; v1; om1
u0; om2

v1� and the eigenvalue is q ¼ q2 ¼ q�1
1 .
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If N 1 and N 2 sampling points are used on C1 and C2 (and their opposite edges) of the unit cell X, respec-
tively, the DtN map K is approximated by a J � J matrix, where J ¼ 2ðN 1 þ N 2Þ. The operators Mjk for
j; k ¼ 1; 2, become N 1 � N 1 matrices. The eigenvalue problems (24) and (29) involve ð2N 1Þ � ð2N 1Þ and
ð2N 2Þ � ð2N 2Þ matrices, respectively. On the other hand, the eigenvalue problems on the diagonals, i.e.,
(30) and (31), involve J � J matrices. All these eigenvalue problems can be solved in OðJ 3Þ operations. Since
the typical value of J is quite small, our method is highly competitive. Compared with our previous DtN for-
mulations developed in [29], the new formulations (24) and (29)–(31) are simpler and they give smaller matri-
ces along lines parallel to b1 or b2. For a triangular lattice, although the general treatment developed in this
section is applicable, the approach based on hexagon unit cells developed in [30] is still preferred because of the
symmetry.
3. DtN map by boundary integral equations

To find a matrix approximation to the DtN map K, we choose J sampling points on the boundary of unit
cell X and approximate the general solution in X by a linear combination of J special solutions:
uðxÞ ¼
XJ

j¼1

cj/jðxÞ; ð32Þ
where /j satisfies the Helmholtz equation (1). Let the J sampling points on the boundary of X be x1; x2; . . . ; xJ .
If we use (32) to evaluate u at the sampling points, we obtain a J � J matrix K1 that maps the coefficients fcjg
to the J values of u on the boundary of X. In fact, the ðk; jÞ entry of the matrix K1 is /jðxkÞ. We can also find
the x and y derivatives of /j and evaluate the normal derivative of u at the J sampling points. This gives rise to
another J � J matrix K2 that maps fcjg to the normal derivatives of u at the J points. The ðk; jÞ entry of the
matrix K2 is om/jðxkÞ, where m is a unit vector of the boundary at point xk. Then, the DtN map of the unit cell is
approximated by the matrix K ¼ K2K

�1
1 :

If the unit cell contains a circular cylinder, we choose /j as cylindrical waves which are given analytically.
At least for square and hexagon unit cells, the cylindrical waves give rise to accurate approximations of the
DtN map K. Numerical experiments in [29,30] indicate an exponential convergence with respect to the number
of points used on each edge of the unit cell. In the following, we consider a more general unit cell containing a
cylinder of arbitrary cross section. Our approach is to let
/j ¼ /ðiÞj þ /ðsÞj ;
where /ðiÞj is a plane wave propagating with an incident angle sj and /ðsÞj is the associated scattered wave. The
incident angles are either sj ¼ 2pj=J or sj ¼ 2pðj� 0:5Þ=J depending on how the sampling points are chosen.
We solve the scattered wave /ðsÞj by a boundary integral equation method. The J different scattered waves cor-
respond to the same scatterer and they can be efficiently solved together.

Let X1 be the cross section of the cylinder in the unit cell, let n1 and n2 be the refractive indices of the cyl-
inder and the surrounding medium, respectively, the scattering problem is formulated in the entire xy-plane R2

for a single cylinder. Let X2 ¼ R2 n X1 be the domain outside the cylinder, the incident wave is given in X2 as
/ðiÞj ðxÞ ¼ exp½ik0n2ðx cos sj þ y sin sjÞ�;
and the scattered wave /ðsÞj satisfies the Sommerfeld radiation condition at infinity. In our boundary integral
formulation, we solve for two functions w and u defined on the boundary R of domain X1. Let mðpÞ be the
outward unit normal vector of R at a point p, we have
wðpÞ ¼ /jðpÞ; uðpÞ ¼
o/jðpÞ
omðpÞ :
For the H polarization, the normal derivative of /j is not continuous on R, then u is defined as the limit from
the outside of the cylinder, i.e., from X2. Let Gl (for l ¼ 1, 2) be the fundamental solution of the Helmholtz
equation in the medium with refractive index nl, i.e.,
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Glðp; qÞ ¼
i

4
H ð1Þ0 ðk0nljp� qjÞ;
we define the single- and double-layer integral operators by
ðSllÞðpÞ ¼ 2

Z
R

Glðp; qÞlðqÞdsðqÞ; p 2 R;

ðKllÞðpÞ ¼ 2

Z
R

oGlðp; qÞ
omðqÞ lðqÞdsðqÞ; p 2 R;
where l is an arbitrary function defined on R. Then, w and u satisfy the following integral equations:
ð1þK1Þw� S1u ¼ 0; ð33Þ

ð1�K2Þwþ cS2u ¼ ð1�K2Þ/ðiÞj þ S2

o/ðiÞj

om
; ð34Þ
where c ¼ 1 and c ¼ n2
1=n2

2 for the E and H polarization, respectively. Once w and u are solved, we can eval-
uate the total wave field at a point p in X2 by
/jðpÞ ¼ /ðiÞj ðpÞ þ
Z

R

oG2ðp; qÞ
omðqÞ

~wðqÞdsðqÞ �
Z

R
G2ðp; qÞ~uðqÞdsðqÞ; ð35Þ
where
~wðqÞ ¼ wðqÞ � /ðiÞj ðqÞ; ~uðqÞ ¼ uðqÞ �
o/ðiÞj ðqÞ
omðqÞ ; q 2 R:
If we have a unit vector mðpÞ at a point p 2 X2, we can evaluate the directional derivative at p by taking the
derivative from (35) directly. That is
o/jðpÞ
omðpÞ ¼

o/ðiÞj ðpÞ
omðpÞ þ

Z
R

o2G2ðp; qÞ
omðpÞomðqÞ

~wðqÞdsðqÞ �
Z

R

oG2ðp; qÞ
omðpÞ ~uðqÞdsðqÞ: ð36Þ
To solve the integral Eqs. (33) and (34), we use a numerical method described in [37]. The method is especially
suitable when the interface R is smooth. Starting from a parametric representation of R given by
q ¼ ðx; yÞ ¼ ðnðhÞ; gðhÞÞ; 0 6 h 6 2p;
we approximate u and w by vectors of length m following a discretization of h as hl ¼ 2pl=m for 0 6 l < m.
The integral operators are approximated by m� m matrices through the following three steps. First, we trans-
form the integral operators on R to those on ½0; 2p�. We have functions S1, S2, K1 and K2 satisfying
ðSllÞð#Þ ¼
Z 2p

0

Slð#; hÞlðhÞdh; ðKllÞð#Þ ¼
Z 2p

0

Klð#; hÞlðhÞdh
for l ¼ 1, 2, where
Slð#; hÞ ¼
ir
2

H ð1Þ0 ðk0nlrÞ; Klð#; hÞ ¼ �
ik0nlq

2r
H ð1Þ1 ðk0nlrÞ
and
p ¼ ðnð#Þ; gð#ÞÞ;
n ¼ ðg0ðhÞ;�n0ðhÞÞ;

r ¼ rðhÞ ¼ jq0j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½n0ðhÞ�2 þ ½g0ðhÞ�2

q
;

r ¼ rð#; hÞ ¼ jp� qj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½nð#Þ � nðhÞ�2 þ ½gð#Þ � gðhÞ�2

q
;

q ¼ qð#; hÞ ¼ n � ðq� pÞ ¼ g0ðhÞ½nðhÞ � nð#Þ� � n0ðhÞ½gðhÞ � gð#Þ�:
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Next, we separate the logarithmic singularity in the integral operator kernels. For Sl and Kl, we have smooth
functions Sl;1, Sl;2, Kl;1 and Kl;2 such that
Slð#; hÞ ¼ Sl;1ð#; hÞ ln 4 sin2 #� h
2

� �
þ Sl;2ð#; hÞ; ð37Þ

Klð#; hÞ ¼ Kl;1ð#; hÞ ln 4 sin2 #� h
2

� �
þ Kl;2ð#; hÞ; ð38Þ
where
Sl;1 ¼ �
r

2p
J 0ðk0nlrÞ; Kl;1 ¼

k0nlq
2pr

J 1ðk0nlrÞ;
Sl;2 and Kl;2 are evaluated using (37) and (38), except when # ¼ h. In that case,
Sl;2ðh; hÞ ¼
i

2
� C

p
� 1

p
ln

k0nlr
2

� �� �
r;

Kl;2ðh; hÞ ¼
g0ðhÞn00ðhÞ � n0ðhÞg00ðhÞ

2pr2
;

where C ¼ 0:57721 . . . is the Euler’s constant. Finally, we discretize the integral operators by quadrature for-
mulas. For smooth functions, the standard trapezoidal rule is used. For the product of the logarithmic singu-
larity with a smooth function, the following special quadrature formula is used. Assume that m is an even
integer, we have
Z 2p

0

ln 4 sin2 #� h
2

� �
f ðhÞdh �

Xm�1

j¼0

Rjð#Þf ðhjÞ;
where
Rjð#Þ ¼ �
4p
m

Xm=2�1

k¼1

1

k
cos½kð#� hjÞ� �

4p
m2

cos½mð#� hjÞ=2�:
More details can be found in [37]. With the integral operators approximated by matrices, the right hand side of
(34) can be easily evaluated, u and w can then be solved in Oðm3Þ operations. Afterward, for each sampling
point p on the boundary of the unit cell X, we evaluate /jðpÞ and its normal derivative using (35) and (36). In
that case, p is not on the interface R, the integral operators in (35) and (36) have smooth kernels, thus they can
be easily discretized with the trapezoidal rule.

To construct the DtN map K, we need J special solutions corresponding to J different plane incident waves.
We emphasize that the total required number of operations is still Oðm3Þ, assuming that J is on the same order
as m. This corresponds to solving J linear systems with the same coefficient matrix. The matrix approximations
to the integral operators and the LU decomposition of the coefficient matrix are calculated only once.

4. Numerical examples

We first test our method for PhCs with square unit cells containing circular cylinders. For the examples in
[29], we have obtained nearly identical results. For a circular cylinder, the scattering field /ðsÞj associated with a
plane incident wave /ðiÞj can be solved analytically. This allows us to test our boundary integral equation
method for solving /ðsÞj . The DtN-map method developed in [29] uses different special solutions (the cylindrical
waves) to construct the DtN maps of the unit cells and also uses different eigenvalue formulations.

In this following, we illustrate our method by a few examples involving non-circular cylinders. First, we
consider a rectangular lattice of elliptic air-holes in a background medium with dielectric constant
�2 ¼ n2

2 ¼ 11:4. A unit cell is shown in Fig. 2(a). The periods in the x and y directions are L1 and L2, respec-
tively. As in [38], we assume that L1 ¼ 0:77L2. The minor and major axes of the elliptic air-holes are parallel to
the x and y axes, respectively. The lengths of the semi-axes are r1 ¼ 0:3L2 and r2 ¼ 0:4L2. The PhC has reflec-
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Fig. 2. Unit cells for three examples of two-dimensional photonic crystals.
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tion symmetries with respect to the x and y axes. This implies that the dispersion relations have reflection sym-
metries with respect to the a and b axes on the plane of Bloch wave vector k ¼ ða; bÞ. Therefore, the irreducible
Brillouin zone is the rectangle bounded by the four points: C ¼ ð0; 0Þ, X ¼ ðp=L1; 0Þ, M ¼ ðp=L1; p=L2Þ and
X 0 ¼ ð0; p=L2Þ. Using N 1 ¼ 8 and N 2 ¼ 10 points on the short and long edges of the rectangular unit cell,
respectively, and m ¼ 128 points to discretize the boundary of ellipse, we obtain the band diagram shown
in Fig. 3. The horizontal axis corresponds to the four edges and one diagonal of the irreducible Brillouin zone.
The vertical axis is the normalized frequency xL2=ð2pcÞ. The dashed and the solid curves correspond to the E

and H polarizations, respectively. To validate our results, we have repeated the calculations for
xL1=ð2pcÞ ¼ 0:15, 0.2, 0.4 and 0.5, using various values of N 1, N 2 and m. Consistent results are obtained
for N 1 6 14, N 2 6 18 and m 6 512. In [38], a complete bandgap (for both polarizations) was found for
r1 ¼ 0:38L2 and r2 ¼ 0:45L2. We are able to confirm the existence of a complete bandgap. However, since
the air-holes are very close to each other (the shortest distance between two air-holes is only 0:01L2), it is dif-
ficult to verify the accuracy of the solutions, especially for the H polarization.

The second example is a square lattice of elliptic dielectric rods in air, where the dielectric constant of the
rods is �1 ¼ n2

1 ¼ 14. As shown in Fig. 2(b), the major axis of the elliptic rods and the x-axis form a 45� angle.
The lengths of the semi-axes are r1 ¼ 0:424L and r2 ¼ 0:212L. The structure has reflection symmetries with
respect to straight lines y ¼ �x. This implies that the dispersion relations (9) also have reflection symmetries
with respect to the lines b ¼ �a on the ab plane. Therefore, the irreducible Brillouin zone is the triangle with
vertices at C ¼ ð0; 0Þ, M ¼ ðp=L; p=LÞ and M 0 ¼ ð�p=L; p=LÞ. Using N ¼ 6 sampling points on each edge of
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Fig. 3. Band structure of a rectangular lattice of elliptic air-holes in a dielectric medium ð�2 ¼ 11:4Þ. The solid and dashed lines represent
the H and E polarizations, respectively.
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Fig. 4. Band structure for a square lattice of elliptic dielectric rods ð�1 ¼ 14Þ in air (the E polarization).
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the unit cell and m ¼ 128 points to discretize the boundary of the ellipse, we obtain the dispersion curves for
the E polarization as shown in Fig. 4. On the top edge M 0M , the dispersion curves are symmetric with respect
to the mid-point X 0 ¼ ð0; p=LÞ. In fact, Eq. (14) can be written as xkða; p=LÞ ¼ xkð�a; p=LÞ. Therefore, the
band diagram shows only half of the top edge, from M to X 0, but it also includes a line from M 0 to C. Our
results agree with those of Feng et al. [39] who used a plane wave expansion method. The results shown in
Fig. 4 are verified with other values of N and m for a few frequencies.

Finally, we consider a square lattice of dielectric rods with a kite-shaped cross section as shown in Fig. 2(c).
The dielectric constant of the rods is �1 ¼ n2

1 ¼ 13 and the background medium is air. The boundary of the rod
in the square unit cell (given as 0 < x; y < L) has the following parametric representation:
Fig. 5.
polariz
x ¼ L
6
ð2:35þ cos hþ 0:65 cos 2hÞ; y ¼ Lð0:5þ 0:25 sin hÞ
for 0 6 h 6 2p. Since the refractive index is real, we can apply (13) and consider only half of the first Brillouin
zone with positive a. On the other hand, the structure has a reflection symmetry with respect to the x-axis. This
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Band structure for a square lattice of kite-shaped dielectric rods ð�1 ¼ 13Þ in air. The solid and dashed lines represent the E and H

ations, respectively.



Table 1
Computed Bloch wave vector component for xL=ð2pcÞ ¼ 0:4

N k on CX 0 k on X 0M

5 0.58314 0.30949
6 0.58086 0.31273
7 0.58106 0.31260
8 0.58148 0.31189
9 0.58176 0.31147
10 0.58152 0.31186
11 0.58176 0.31166
12 0.58160 0.31166
13 0.58168 0.31171
14 0.58168 0.31168
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implies that the dispersion relations satisfy xkða; bÞ ¼ xða;�bÞ. Therefore, the irreducible Brillouin zone is the
square with corners at C ¼ ð0; 0Þ, X ¼ ðp=L; 0Þ, M ¼ ðp=L; p=LÞ and X 0 ¼ ð0; p=LÞ. Using N ¼ 7 points on
each edge of the unit cell and m ¼ 128 on the boundary of the kite-shaped rod, we obtain the dispersion curves
shown in Fig. 5. These results are verified with repeated calculations using other values of N and m for
xL=ð2pcÞ ¼ 0:07, 0.25 and 0.4. The case for xL=ð2pcÞ ¼ 0:4 and m ¼ 128 is given in Table 1. It seems that
3 or 4 significant digits can be obtained with N 6 10. Since the global expansion (32) is used to construct
the DtN map, ill-conditioning will affect the accuracy when N is too large.

In the above calculations, we solved the eigenvalue problems 24, 29, 30 and 31 for q (i.e., q1 or q2) on the
unit circle. In practice, this condition is replaced by j1� jqjj 6 d, where d is on the order of 10�3. Our method
is efficient, since the size of the matrices is very small.

5. Conclusions

For 2D PhCs containing cylinders with arbitrary cross sections, we developed a boundary integral equation
method for constructing the DtN maps of the unit cells and applied the DtN maps to compute the band struc-
tures. Numerical examples include dielectric rods in air and air-holes in dielectric media, where the rods and
air-holes have elliptic or kite-shaped cross sections. The DtN map is obtained by approximating the general
wave field inside a unit cell by a sum of J special solutions and evaluating the field and its normal derivative at
J sampling points on the boundary of the unit cell. The special solutions are obtained from solving scattering
problems for a single cylinder on the entire plane. The boundary integral equation method is ideal for the scat-
tering problem, since the refractive index is constant inside and outside the cylinder. The different special solu-
tions are related to the scattering of different plane incident waves on the same cylinder, and they can be solved
together efficiently, since they correspond to linear systems with the same coefficient matrix and different right
hand sides. The required number of operations for constructing the DtN map is Oðm3Þ, where m is the number
of points for discretizing the boundary of the cylinder. The band structures are calculated from linear eigen-
value problems of small matrices. The sizes of these matrices are J � J or less. In the numerical examples, rea-
sonably accurate solutions have been obtained with m ¼ 128 and J ¼ 24, 28 and 36.

The DtN maps of a unit cell has also been used to develop efficient numerical methods for analyzing the
transmission and reflection of finite PhCs [35,36].
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